If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+10y+13=0
a = 1; b = 10; c = +13;
Δ = b2-4ac
Δ = 102-4·1·13
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4\sqrt{3}}{2*1}=\frac{-10-4\sqrt{3}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4\sqrt{3}}{2*1}=\frac{-10+4\sqrt{3}}{2} $
| c=2(3.14)(13) | | 3x²=7-2x | | 90+x=110-3x | | 24=10y | | -8(z–5)=-56 | | d–12=4 | | -9r+8r=9 | | 15=35b | | 7y=10+2y | | 4x-8=10x-4 | | -6x+8+x=14+9x | | x^2-2+7=0 | | -5(-2u+2)-4u=2(u-7)-6 | | ((5-x^2)/2)^2-4x=0 | | (2x2-14x+24)/(x2-9)=0 | | 2x=2.6667 | | 4(x-10)/12=12 | | 6.35+3.13x-10=12.28 | | x^+6x-16=0 | | 9x+2=-6x+92 | | 22=6x=4x-16 | | 3(x-5)=9x+3 | | 3x+1+2x=4x+6 | | 56-6x=0 | | 3(4x-5)=12(x+1) | | 0.7y-0.3y+0.1y=3 | | 3x×2x=6x | | 4(y-2)=4+2y | | 4y+8y+5y=34 | | 12+3x+4+3x=2(3x+8) | | 9t+9=10t+30 | | 6=-(1/9)y |